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Chapter 2

DeVIDE:
The Delft Visualisation and Image
processing Development
Environment

This chapter describes DeVIDE, the Delft Visualisation and Image processing Development
Environment, a software platform that was created in order to prototype, test and deploy new
computer-based algorithms and ideas.

2.1 Introduction
In the course of any informatics-related research, algorithms and ideas have to be imple-
mented for prototyping, validation and eventually deployment. In this case, prototyping
refers to the action of developing an idea by experimenting with a model implementation.
Here one could imagine creating a first implementation of an algorithm and subsequently
experimenting with different combinations of parameters and algorithm adaptations until a
suitable solution has been converged upon. Validation refers to the phase where the discov-
ered solution is rigorously tested under experimental conditions and its results are perhaps
compared with a gold standard, if available. The validation determines whether the imple-
mentation is suitable for deployment or requires further modification or, in the worst case, is
completely unsuitable to the problem. Deployment refers to the stage where an implementa-
tion is actually used in a practical situation.

During research, by far the most time is spent on the prototyping phase. The prototyping
phase itself should be approached with something akin to the well known iterative software
development model. This development process consists of a sequence of incremental itera-
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Analysis Design Implementation Testing

Figure 2.1: The prototyping phase can be seen as a cyclic ADIT trajectory: the problem is analysed and a solution
is designed and subsequently implemented. If testing indicates that the solution is suitable, work stops.
If not, we return to the analysis stage and refine the process with newly-gained information.

tions, where each iteration consists of most or all of the well-known analysis, design, imple-
mentation and testing (ADIT) phases. Earlier iterations focus on analysis and design, whereas
later iterations pay more attention to implementation and testing. Each iteration refines the
prototype until a satisfactory result is attained.

Figure 2.1 serves as a framework for the following short explanation of the ADIT phases.
During the analysis stage, the problem is identified and described. Requirements are specified
for the solution. The design stage entails creating a solution based on the analysis of the
problem. The resultant design is implemented and tested. The test stage indicates whether
the implemented solution solves the problem. If this is the case, the ADIT is complete. If not,
we return to the analysis stage with the new information we have gathered during the design,
implementation and testing stages. With this information, the ADIT sequence can be refined.
This cyclical ADIT is repeated until a suitable solution has been found.

This cyclical prototyping phase is of central importance to many software-based research
efforts and often represents a significant chunk of research time and effort. In the light of
this, it makes sense to optimise the prototyping stage, as this would enable the researcher to
investigate more possibilities in a shorter time. One method of optimisation is to make tools
available that facilitate prototyping. This chapter describes one such a tool, called DeVIDE,
or the Delft Visualisation and Image processing Development Environment.

2.1.1 Defining DeVIDE
DeVIDE is a cross-platform software framework that provides infrastructure for the rapid
creation, testing and application of modular image processing and visualisation algorithm
implementations. Each implemented algorithm is represented by a module. Each algorithm,
or module, can take input data and generate output data. The output data of one module can be
connected to the inputs of one or more consumer modules. In this way, complex networks of
functionality can be formed where data is successively transformed and processed by various
algorithms. At any point, data can be visualised or written to permanent storage for later use.

These functional networks can be interacted with in order to experiment with parameter
sets and algorithm modifications. Run-time interaction with all module and even system
internals is possible, which greatly facilitates experimentation. This factor distinguishes our
framework from many of the existing network-based solutions.

DeVIDE also provides an implementation of the visual programming user-interface paradigm,
called the Graph Editor, so that the user can graphically interact with these networks of mod-
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Figure 2.2: Figure showing the DeVIDE visual programming interface to the internal representation of a simple
network. DICOM data is being read by the “dicomRDR” module and then thresholded by the “dou-
bleThreshold” module. A 3D region growing is subsequently performed on the thresholded data by the
“seedConnect” module, starting from seed points indicated by the user. The result of this region growing
is volume rendered with the “shellSplatSimple” module.

ules. Glyphs, or blocks representing modules, can be graphically placed and connected to
each other. However, it is important to note that this is just one of the possibilities for in-
teracting with the networks, i.e. DeVIDE was not designed only around this user interface
element. Figure 2.2 shows an example of a simple network as rendered by the DeVIDE Graph
Editor. Figure 2.3 shows a different representation of the same network where all algorithm
parameters and output descriptions are also visible. In this case, DeVIDE generated a special
network representation that could be used as input to the AT&T GraphViz software[GN00].

Because the main design requirement of DeVIDE was to optimise the prototyping pro-
cess, much effort has been put into minimising the overhead required to integrate code into
the framework. In spite of the fact that comparatively little effort is required to integrate with
the framework, the advantages are quite significant.

2.2 Requirements
As mentioned in the previous section, the main and most important requirement for DeVIDE
was that it should facilitate prototyping and experimentation with algorithm implementations.
A secondary top-level requirement was that it should enable the delivery of code, i.e. once
an algorithm has been implemented, it should be possible for a third party to make use of
such an implementation. For example, if an image processing module were developed for
use in finite element analysis, it should be possible for a cooperating engineer to test the new
functionality within the DeVIDE infrastructure.

This section lists and defines the design requirements at a more fine-grained level. All of
these fall under either or both of the above-mentioned top-level requirements.

Easy integration The software should make the minimum of demands on the module de-
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modules.Filters.doubleThreshold d3m4
inValue : 1.0

lowerThreshold : 400.0
outValue : 0.0

outputScalarType : -1
replaceIn : 1

replaceOut : 1
upperThreshold : 2500.0

modules.Filters.seedConnect d3m4ema4
inputConnectValue : 1

outputConnectedValue : 1
outputUnconnectedValue : 0

Thresholded data (vtkImageData)

modules.Filters.shellSplatSimple d3m5
colour : (1.0, 0.93700000000000006, 0.85899999999999999)

gradientImageIsGradient : 0
renderMode : 0

threshold : 400.0

modules.Viewers.slice3dVWR d3m1
boundsForPoints : Compacted

implicitsState : []
savedPoints : Compacted

Shell splat volume (vtkVolume)

modules.Readers.dicomRDR d3m4tjd4
dicomFilenames : Compacted

estimateSliceThickness : 1
seriesInstanceIdx : 0

DICOM data (vtkStructuredPoints)

DICOM data (vtkStructuredPoints)

DICOM data (vtkStructuredPoints)

Selected points

Region growing result (vtkImageData)

Figure 2.3: Alternative representation of the simple network shown in figure 2.2. All explicit algorithm parameters
are also shown: this is useful when documenting experiments.
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veloper. In other words, the advantages of integration should far outstrip the effort
involved in integrating functionality with the framework.

Pervasive Interaction It should be possible to interact at all levels with all components of
the software. Parameters can be changed, code can be added, removed or changed and
there should be immediate feedback on the effect of these changes. This speeds up
experimentation and the implicit convergence on a solution in the code and parameter
domains.

Short code-test iterations A pattern often seen during implementation is a repetitive code
modification, compile, link, run and test sequence. At every repetition, the researcher
tries a new set of parameters or code modifications that will eventually converge on the
correct solution. It is desirable to speed up these iterations.

Modularity It is desirable to keep code as modular as possible and to keep the module
interface as small as possible. This aids robustness as it is easier to pinpoint any errors.
Re-use is facilitated.

Code re-use Being able to re-use research code that has been developed in-house and also
being able to make that code available to third parties is a highly desirable character-
istic. This speeds up subsequent research efforts that may make use of code written
during previous attempts. It also enables the reproduction of results.

Scalability The framework should remain manageable and functional regardless of the amount
of functionality (number of modules) that is integrated. With large software libraries
and non-modular (monolithic) systems, the software can reach a critical mass of func-
tionality. Adding more functionality past this point makes it increasingly difficult to
manage and maintain the library and also to utilise it. In other words, there is a di-
rect relationship between complexity and functionality. This relationship should be
avoided.

Platform independence The software should be portable.

2.3 Related work
Various systems that assist with the prototyping of and experimentation with visualisation
and image processing algorithms are available. In this section, we discuss a selection of these
solutions that offer functionality similar to that of DeVIDE.

In [Tel00], frameworks for simulation and visualisation, also called SimVis frameworks,
are classified as adhering to one or more of the following architectural models:

Application Libraries are repositories of software elements, or program code, that can be
re-used via published application programming interfaces, or APIs. In practice, this
means that the researcher writes new program code that makes use of an existing ap-
plication library via method calls or object invocations.
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Turnkey Applications are purpose-built stand-alone applications that can be used to experi-
ment with a subset of the simulation and visualisation problem domain. The processing
pipeline is usually fixed and the only factors that can be investigated are program pa-
rameters and input data sets.

Dataflow Application Builders are frameworks where software components with clearly
determined inputs and outputs can be linked together to form larger functional net-
works that process incoming data to yield some desired derivative output data set. A
graphical user interface is available that enables the user to manipulate iconic represen-
tations of the software components and to build and interact with the aforementioned
functional networks.

Visualisation and image processing frameworks can naturally be described in the same
way. DeVIDE mainly adheres to the Dataflow Application Builders architectural model, but
can also be utilised as an Application Library or can be used to build Turnkey Applications.

2.3.1 VTK and ITK
VTK[SML99], or the Visualization Toolkit, is an extensive object-oriented application li-
brary of C++ classes focused on visualisation and related data processing. Due to its native
automatic wrapping system, VTK functionality can be invoked from the Python, Tcl or Java
languages as well. ITK[ISNC03], or the Insight Segmentation and Registration Toolkit, is
also an Application Library of C++ classes encapsulating a wide spectrum of image pro-
cessing and registration functionality. ITK makes use of a heavily modified form of the
SWIG[Bea03] wrapping system to make available Python, Tcl and Java bindings.

Although both of these are strictly speaking application libraries, the fact that their func-
tionality is completely addressable from dynamic interpreted languages such as Python and
Tcl makes it possible to use these libraries, albeit in a limited fashion, as dataflow applica-
tion builders. Both VTK and ITK employ dataflow-based processing, so a dynamic language
wrapping can be used as a rudimentary text-based interface to connect and disconnect pro-
cessing elements.

However, the most common use-case with VTK and ITK is that they are used to create
new turnkey applications for visualisation and image processing. A turnkey application usu-
ally does not facilitate experimentation with its underlying functionality. DeVIDE integrates
all functionality in both of these libraries and so makes all this functionality available through
a dataflow application builder architectural model. It is possible to experiment with any com-
bination of VTK and ITK elements at runtime. Effectively, one can experiment not only with
parameters and input data, but also with different code paths.

2.3.2 IBM OpenDX
IBM OpenDX, previously known as the IBM Visualization Data Explorer, is a dataflow appli-
cation builder that focuses on data analysis and visualisation[AT95]. A distinguishing char-
acteristic of this platform is its extremely generic, i.e. discipline-independent, data model.
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Roughly speaking, data is encapsulated in a data-structure called a field. A field can contain
any number of named components that constitute the actual data storage. A component con-
tains for example positions, i.e. the geometry of a dataset, or connections, i.e. the topology of
a dataset, or attribute data that is associated with the geometry such as colour or temperature.

In our experience, the consistency of this data-model speeds up the understanding of and
writing new modules for OpenDX, although it is often not the most memory- or processor-
efficient way to store and work with large datasets. In this sense, the more pragmatic approach
of for instance VTK might be more suitable.

OpenDX modules are programmed in C and adhere quite strictly to an extensive module-
programming API. The OpenDX Module Builder assists with this process by generating a
module source code skeleton based on user input with regards to the desired characteristics
of the new module. Modules have to be compiled before they can be used, but modified
and newly compiled modules can be reloaded while the rest of the software remains running.
Reloading is not always without complications: for example, if the number or type of module
inputs have changed, it is often necessary to restart the server component of the software. All
other runtime interaction takes place via the dedicated module user interfaces.

OpenDX expects far more effort from a module developer than a network builder. Be-
cause the module building and prototyping activity is a very important part of the complete
algorithm prototyping process, we consider this and the relatively limited interaction possi-
bilities to be weaknesses in the otherwise excellent OpenDX platform.

2.3.3 SCIRun
SCIRun[Par99] is a more modern software package that focuses on providing functionality
for computational steering in a visual programming setting, i.e. it is also a dataflow appli-
cation builder. This combination is called a PSE, or Problem Solving Environment. The
design goal of this system was to provide scientists with a tool for creating new simulations,
developing new algorithms and for coupling existing algorithms with visualisation tools.

SCIRun is a rather large and complex package that currently runs only on Unix systems.
Writing a new SCIRun module entails writing a new C++ class that inherits from a special
base class and exposes certain expected methods. A module optionally takes input and gen-
erates output data. All data objects are encapsulated by SCIRun-specific C++ classes. In
selected cases, third party code, for example ITK objects, can be integrated as SCIRun mod-
ules by authoring a number of eXtensible Markup Language (XML) files that describe the
code object that is to be wrapped, the SCIRun module that will represent it and optionally the
user interface. SCIRun uses this XML description to build C++ code at a later stage.

In all cases, C++ code has to be compiled after every change to the module specification.
Compiled code is dynamically loaded at run-time. SCIRun is able to compile changed mod-
ule source code while the platform is running, but this obviously requires a configured and
compatible build system on the host machine.

Tcl/Tk[Ous94] was initially integrated into the system in order to act as graphical user
interface layer, but it is also used for example for saving SCIRun networks and for evaluating
expressions. It is also possible to interact with a running simulation via a Tcl shell window.
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2.3.4 VISSION
VISSION[Tel00], or VISualisation and SImulation with Object-oriented Networks, is a very
interesting departure from the conventional C++-based dataflow application builder pattern.
This work introduced the Meta-C++ concept: VISSION integrates an embedded C++ inter-
preter, called CINT[RB98], that is used to interpret, at run-time, module specification files
that are also written in C++.

This has several advantages: external compiled C++ libraries can be incorporated in VIS-
SION modules without having to make any changes to the external code. The C++ interpreter
is able to dynamically load and unload compiled code at run-time, which means that mod-
ule specifications can be changed without having to restart the platform or recompile any
program code.

This interpreter is also used as an extra interaction modality. In other words, the user can
interact with the software via a text interface, by typing C++ statements that are immediately
interpreted and executed by the interpreter.

Usually, a scripting language interpreter is embedded into an application written in some
other compiled language in order to perform the necessary run-time parsing and execution.
This is called a dual language framework. The author of VISSION argues that his single
language approach for both the compiled and interpreted components is superior. Besides
the relevant countering points we make in section 2.5.1, it is important to keep in mind that
C++ was designed to be a compiled language, whereas there are other modern languages that
have been designed and optimised for and take far more advantage of the dynamic interpreted
setting in which they function.

Unlike SCIRun and OpenDX, VISSION does not require modules to make use of pre-
determined types for input and output data, but instead relies on the typing of the underlying
C++ code.

At the time of publication of [Tel00], VISSION was only available for Unix-like plat-
forms. It has come to our knowledge that a porting effort is underway in order to make
VISSION available on Windows PCs as well.

2.3.5 ViPEr
ViPEr[SSO02] is a dataflow application builder that is fundamentally the most similar to
DeVIDE. Instead of embedding the interpreter in the application code, the interpreter acts as
the main process and is extended with application code. For example, VISSION and SCIRun
embed respectively the CINT and Tcl/Tk interpreters and in both cases the compiled C++
application code acts as the main process, whereas in the case of ViPEr and DeVIDE, the
Python interpreter itself acts as the main process and is extended with application code that is
implemented in Python and other compiled languages. This is quite an important distinction.
The advantages associated with the latter philosophy will become clear throughout the rest
of this chapter.

ViPEr focuses on molecular visualisation and modelling. It places no restrictions on data
types, although these can optionally be specified for documentation and interaction purposes.
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Modules, also called nodes in ViPEr parlance, can be constructed or modified at run-time and
are specified as Python source files. The module specification framework, although facilitat-
ing the creation of modules, is not as flexible as its Python formulation allows.

Graphical interaction widgets are represented as a special kind of node that can be con-
nected to processing nodes. Direct interaction with the Python interpreter is possible.

2.3.6 Summary
In this section we have briefly discussed a selection of visualisation and image processing
frameworks with a clear focus on dataflow application builders. Table 2.1 summarises our
findings. VTK and ITK, both application libraries, were also introduced because they consti-
tute an important part of DeVIDE’s built-in functionality. In addition, due to their Python and
Tcl wrappings, they can be seen as examples of visualisation and image processing platforms
that extend these languages.

OpenDX represents the more traditional approach to constructing a dataflow application
builder: the whole system is implemented in a static, compiled language. Module specifica-
tion takes place in the same way. There is no mentionable dynamic interpreter interface.

SCIRun embeds the Tcl interpreter and thus constitutes a traditional dual language frame-
work. Module specification itself still takes place in C++ that has to be compiled. The module
user interface is specified in Tcl. In selected cases, an XML module specification can be au-
tomatically translated into C++.

VISSION is an interesting development in that it embeds a C++ interpreter and thus offers
all the advantages of an embedded interpreter, but in a single language. Modules are specified
in Meta-C++, which is interpreted, i.e. not compiled, at run-time. This does simplify the
process.

ViPEr extends Python with application code, and is the most similar to DeVIDE. Both
offer extensive dynamic interaction functionality via the extended interpreter. However,
whereas ViPEr specialises in molecular visualisation and modelling, DeVIDE is focused on
the visualisation and image processing, mostly due to the integrated VTK and ITK libraries.
In addition, we feel that the DeVIDE module specification and user interaction framework is
significantly more flexible than that of ViPEr. With regards to ease and speed of integration,
i.e. new module specification, both ViPEr and DeVIDE constitute a significant improvement
over any of the other mentioned frameworks.

2.4 Architecture
In literature, the terms architecture, design and implementation are often used in order to
describe software systems. However, the definitions of these terms are not straight-forward.
Broadly speaking, these three terms refer to different levels of abstraction and detail, with
implementation referring to the highest level of detail and concreteness and architecture re-
ferring to the lowest level of detail and the highest level of abstraction[EK03]. Figure 2.4
illustrates this continuum. In literature, there is no consistent distinction to be found.
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Framework Module Spec. Typing Interpreter Platforms
VTK C++ VTK-specific Python/Tcl - ext Unix/Win
ITK C++ ITK-specific Python/Tcl - ext Unix/Win
OpenDX C++ / MDF DX-specific None Unix/Win
SCIRun C++ / XML / Tcl SCIRun-specific Tcl - emb Unix
VISSION Meta-C++ Underlying C++ Meta-C++ - emb Unix
ViPEr Python Dynamic Python - ext Unix/Win
DeVIDE Python Dynamic Python - ext Unix/Win

Table 2.1: A selection of existing frameworks and some of their distinguishing characteristics. Module Spec. refers
to module specification, and is an indication of how new modules are created for the relevant framework.
In the Interpreter column, ext and emb signify extended and embedded respectively.

Figure 2.4: The architecture, design and implementation continuum: from concreteness and high-detail to abstrac-
tion and low-detail.
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For the sake of this exposition, we will make use of a definition similar to that of Perry
and Wolf[PW92]. Their definitions of architecture, design and implementation are as follows:

• architecture is concerned with the selection of architectural elements, their interactions,
and the constraints on those elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve as a basis for the design;

• design is concerned with the modularisation and detailed interfaces of the design ele-
ments, their algorithms and procedures, and the data types needed to support the archi-
tecture and to satisfy the requirements; and

• implementation is concerned with the representation of the algorithms and data types
that satisfy the design, architecture, and requirements.

We will document design and implementation together in section 2.5. In this section, we
will be looking at the high-level structure of DeVIDE and focus on the main architectural
elements, in other words, the building blocks of the DeVIDE framework.

Figure 2.5 shows a diagram of the high-level DeVIDE architecture. We will now proceed
to document each of the illustrated components.

2.4.1 The Module and Module API
The DeVIDE module is a central concept in the whole architecture. All algorithmic function-
ality is implemented and made available to the framework in the form of modules. Module
functionality is exposed to the rest of the system via the Module API, which consists of a set
of standard functions and behaviours. See section 2.5.3 for implementation details on this
API.

Due to the module API, each module has zero or more input ports and zero or more output
ports. Two modules can be connected by associating one or more of the first module’s output
ports to one or more of the second module’s input ports. When this is done, data produced
by the first module is available for further processing by the second module. By connection
more modules together in this way, large networks of functionality can be built.

Any object of functionality can be integrated as long as it can be made to satisfy the
module API. Due to the choice of Python as module specification language (see section 2.5.1),
a very large class of functional objects can be integrated with relatively little effort.

It is important to note that writing a DeVIDE module refers almost exclusively to creating
the DeVIDE-specific specification that will make the encapsulated functionality available
via the module API. This means that no modifications have to be made to the encapsulated
implementation itself.

2.4.2 Module Library
The module library is a repository of functions and behaviours that can be used by module
writers to satisfy the module API and integrate functionality with the DeVIDE framework.
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Figure 2.5: Diagram of the high-level DeVIDE architecture. The Module Manager is the main external interface.
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For example, by making use of a behaviour in the module library, a module writer can encap-
sulate the functionality of a VTK class with four or five lines of code. Section 2.5.6 has more
detail on this.

2.4.3 Module Manager
All modules and module-related resources are controlled by the module manager. All access
to modules and module resources has to take place via the module manager. This component
has the following responsibilities:

Cataloguing The module manager searches permanent storage for valid modules and makes
a list of such modules available to its clients. Since new modules can be added and
modules can be removed at run-time, the module manager can be asked to update its
list at any stage.

Instantiation, reloading and destruction Any number of instances of a specific module can
be created. A module has to be instantiated before it can be used to process data. Each
instantiation of a module makes use of the most current module specification, in other
words, if changes are made to the specification, the next instance created by the module
manager will include these changes.

Once a module is not required, the module manager can be instructed to destroy it.
During destruction, the module manager ensures that all producer modules, i.e. mod-
ules supplying data to the module that is about to destroyed, and consumer modules,
i.e. modules using data produced by the module that is about to destroyed, are discon-
nected.

Connection and disconnection All module connections and disconnections are taken care
of by the module manager. For example, if the Graph Editor is instructed by the user
to connect two modules, the Graph Editor will first send the request to the Module
Manager. The Module Manager will then perform the actual connection and report on
its success to the Graph Editor.

Execution Although DeVIDE makes use of a demand-driven execution model, i.e. a pro-
cessing step only takes place if an explicit request for its result is made, it is possible to
request explicitly the execution of a part of the network. These requests are controlled
and acted upon by the module manager. DeVIDE’s execution model is discussed in
2.5.4.

Error and progress handling During module instantiation, destruction, connection, discon-
nection or execution, errors may occur. The module manager performs error handling
in this case. Error handling mostly entails notifying the user with an explanation of the
error condition and its origin.

During module execution, explicitly or implicitly requested, the module can report on
its progress to the module manager. The module manager will report on this progress
to the user via a centralised interface.
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Serialisation and deserialisation As part of the module API, each module can be queried
for internal state information. The module manager makes use of this state information
as well as its own internal data structures with regards to the network topology, i.e. how
modules are connected to form networks, in order to serialise the complete state of a
whole network or a section of a whole network. In its serialised form, network state
can be copied or saved to disc. Such a serialised network state can be deserialised,
i.e. it can be used to recreate the original network, for example when loading a saved
network from disc.

2.4.4 External Libraries

All modules have access to a set of external libraries, either directly or via calls in the
module library. At the moment, the standard set of external libraries includes the Visu-
alization Toolkit, or VTK[SML99], the Insight Segmentation and Registration Toolkit, or
ITK[ISNC03], and wxWidgets/wxPython[wxW, wxP]. VTK is an extensive library of C++
classes focused on visualisation and related data processing. ITK is a library of C++ classes
encapsulating a wide spectrum of image processing functionality. wxPython refers to the
Python wrappings of wxWidgets, a library for creating cross-platform graphical user inter-
faces.

More libraries can be added: the only requirement is that the new functionality must be
callable from Python.

2.4.5 Pervasive Interaction

A very important aspect of facilitating and speeding up the prototyping process involves
enabling the user to interact with the system in as many ways as possible and as flexibly
as possible. DeVIDE supports interaction at all levels, from interaction via graphical user
interfaces created by the module developer to writing, loading and executing code at runtime.
This interaction continuum can be roughly divided into four sections, ordered from high-level
to low-level: interaction via graphical user interfaces, construction of functional networks,
introspection and finally batch programming. Introspection will shortly be explained. Batch
programming in this case refers to the action of writing program code, for example in the
form of DeVIDE modules or in the form of a DeVIDE snippet.

In addition to the interaction continuum, one could also imagine a continuum of user
types. According to the nomenclature in [PRST99], ordered from low-level to high-level, we
have: component developer, application developer and end user. We have omitted the frame-
work developer as this is not pertinent to the current discussion. The component developer
refers to a user that develops components that function as part of a software framework. In
our case, this is the module developer. The application builder builds applications by making
use of the developed components. In the context of DeVIDE, this refers to a user that con-
structs functional networks by configuring and connecting DeVIDE modules. The end user
makes use of the constructed networks or applications.
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Figure 2.6: The user type and interaction continua. Interaction can take place at any level of abstraction. Each inter-
action type is more suitable to a specific user type, but no clear partitions can be made. The introspection
interaction modality makes interaction at all points possible.

As illustrated in figure 2.6, the user type continuum runs in parallel to the interaction
continuum: in general the end user is interacting via purpose-built graphical user interfaces,
whilst the application builder is constructing networks and the component developer is mak-
ing use of the introspection and batch programming facilities. However, no clear partitions
can be made between the various user and interaction types. For example, although the net-
work building interaction modality is utilised primarily by the application builder, it is not
inconceivable that the end user might change the topology of a pre-built functional network.

The continua show that interaction is possible at all levels of abstraction, i.e. there is an
element of depth, but interaction at all points in the system, i.e. breadth, is also crucial for
facilitating the prototyping process. In DeVIDE this interaction breadth is represented by the
introspection functionality.

Introspection usually refers to the action of contemplating one’s own thoughts, of self-
examination. In the computer science world, it is also known as reflection and refers to the
action or ability of querying code objects at run-time about their characteristics, and also of
making changes to these executing code objects.

In DeVIDE, any object or variable anywhere in the system can be examined and modified
by the user at run-time. The effects of any changes are immediately visible. For example,
if the output of a module is not as desired, a dialogue with the module internals can be
initiated. During this dialogue, even unexposed variables can be changed and new variables
and executable code can be added. This iterative process continues until the output is as
desired.

The design and implementation issues of the system’s introspection functionality are dis-
cussed in section 2.5.5.
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2.4.6 Graph Editor
The Graph Editor is an important client application of the Module Manager. This is proba-
bly the most flexible graphical user interface to the underlying ideas of creating, configuring
and connecting modules to form functional networks. Modules are represented by glyphs, or
boxes, with graphical representations of input and output ports. These ports can be graphi-
cally connected to the ports of other modules with wires.

In general, this is the interface that most users of the software will spend the most time
working with. It is important to note, however, that this is one possible way of interfacing
with the Module Manager and the underlying modules and networks. There is a very clear
separation between the Graph Editor and the Module Manager. Other client applications are
conceivable.

2.4.7 Mini Apps
In some situations, a simpler interface than the Graph Editor is required, for example if some
subset of functionality is to be made available to a user. In this case, a mini application can
be written that makes use of all DeVIDE functionality and all modules, but with a far simpler
interface and method of operation. Such a mini application interfaces with the DeVIDE
framework exclusively via the Module Manager.

2.5 Design and Implementation
In this section, we document more specific aspects of the DeVIDE framework. Where archi-
tecture is concerned with the architectural elements, or building blocks, of a system, design
and implementation are concerned with how exactly these elements perform their functions.

2.5.1 Python as primary implementation language
Python is an extremely high-level, interpreted, dynamically typed and object-oriented pro-
gramming language[vR01]. An important characteristics of the DeVIDE platform is that all
high-level logic has been implemented in Python whereas processor-intensive logic has been
mostly implemented in compiled C++ and Fortran, or other performance-oriented languages.
This allows us to profit from the higher programmer productivity and software reuse offered
by modern scripting languages[Ous98, Pre00] but, partly because of the well-known rule that
20% of any program is responsible for 80% of the execution time[Boe87], almost completely
negates the normally associated performance impact.

Practically put, the code encapsulated by a DeVIDE module is generally compiled C++
whereas the module specification itself is Python. In addition, all framework code, e.g. the
Module Manager, the Module Library and the Graph Editor, has been implemented in Python.

This could be seen as an instance of the dual language framework concept described in
[PRST99] by Parsons et al. and in [Tel00] by Telea. In the mentioned publications, the dual
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language concept is presented as a way of creating frameworks where modules, or compo-
nents, can be dynamically loaded and utilised in an already running framework. This is in
contrast with compiled frameworks, where the utilised modules and network topology have
to be determined at compile time. The dual language approach is criticised for two reasons:

1. Two languages have to be learned in the cases when a user of the framework acts as
both module developer (“component developer”) and network builder (“application
designer”).

2. The mapping of abstractions from the compiled language to the interpreted language
are complex or impossible, as often the compiled language sports more flexible con-
cepts than the interpreted language. This entails that mapping from low-level to high-
level enforces certain restrictions on the resultant functionality.

In the case of an advanced interpreted and syntactically clear language such as Python,
the permanently increased programmer productivity far outstrips the relatively short time that
has to be spent learning the language. This negates the first point of criticism.

Parsons and Telea describe a setup where the interpreted language is used solely for the
run-time flexibility its interpreted nature offers, i.e. in order to be able to instantiate modules
and build networks at run-time. In our approach, the interpreted language is used wherever
possible, whereas the use of the compiled language is limited to processor-intensive tasks,
such as image processing algorithm implementations. This subtle but important change in
philosophy entails that relatively few abstractions have to be mapped from the compiled lan-
guage to the interpreted language. In addition, we believe that the abstractions made possible
by Python are definitely more powerful than those offered by C++ or Fortran. These factors
negate the second point of criticism.

The use of Python as specification and main implementation language of DeVIDE yields
several compelling advantages:

No compile-link cycle: Being an interpreted language, no compile-link cycle is required for
the Python components of the system. This has significant impact on development
time, as the effects of changes to program code are immediately visible.

Real dynamic loading: We are able to load and reload arbitrary code modules at run-time.
This is standard Python functionality and requires no system-dependent hacks.

Run-time introspection: Any existing program entity, code or data, can be inspected and
modified at run-time. This makes for interesting development and debugging possibili-
ties and is used extensively as part of the DeVIDE “pervasive interaction” architectural
component.

Robust code: Garbage collection, bounds checking, advanced exception handling and other
similar conveniences, help to eliminate basic errors which occur far more easily in
low-level languages.

Programmer productivity: Python language features and the availability of an extensive
collection of third party libraries speed up the development of new functionality.
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2.5.2 Making DeVIDE modules
This section describes how a module developer goes about creating and refining a new DeV-
IDE module. First, the requirements for integrating external code as new modules are set out.
Subsequently, we look at the actual practice of creating and refining a new module by making
use of a simple example. This serves as a more high-level description of module integration.
The subsequent sections supply more low-level detail.

Requirements for integrating third party functionality

For any functionality to be integrated into DeVIDE in the form of modules, that functionality
has to satisfy two requirements:

1. It must support data-flow-based processing. In other words: incoming data is copied,
transformed and then made available at the output. In the large majority of cases, code
that does not follow this model can simply be supplied with a wrapping that does,
without changing the underlying code.

2. It must be callable from Python. This last requirement is usually straight-forward to
satisfy. If Python bindings are not available, these are easily created manually or semi-
automatically with packages such as SWIG[Bea03] or Boost.Python[Boo]. There are
various other ways to invoke external functionality from Python, such as for example
making use of an operating system pipe.

The functionality available in the bundled external libraries as explained in section 2.4.4
is quite extensive and immediately available to new DeVIDE modules. This functionality
already satisfies both these requirements.

As an interesting illustration of the flexibility of DeVIDE module integration, it is also
possible to wrap independent external applications as DeVIDE modules. We have done
this for instance with an existing implementation of an efficient closest point transform
algorithm[Mau03].

In practice

Creating a new DeVIDE module is a straight-forward process. For the sake of this exposition,
we will make use of a simple example: a user is testing discrete curvature calculation methods
on a synthetic object, in this case a superquadric toroid. Because the curvature visualisation
shows discontinuities, the user suspects that the toroid mesh itself has discontinuities and so
sets out to visualise these discontinuities. The user constructs a network, shown in figure 2.7
with the superQuadric, slice3dVWR and vtkFeatureEdges DeVIDE modules. The vtkFea-
tureEdges module is a simple VTK object wrapping, explained in section 2.5.6, that is able
to extract several kinds of edges. In this case, the user configures the module to extract all
boundary edges. A boundary edge is an edge that is used by a single polygon. The boundary
edges will indicate discontinuities in the superquadric tessellation.
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Figure 2.7: DeVIDE network that extracts different types of edges from a superquadric mesh. The mesh and the
extracted edges are visualised together in the slice3dVWR module.

Visualising the extracted boundary edges and the superquadric with the slice3dVWR, the
user notes that the boundary edges are shown as very thin lines which are difficult to pick out.
It is decided that it would be useful to create a module that builds polygonal tubes from thin
lines.

The user makes use of one of the packaged module behaviours in the Module Library
(see section 2.5.6) and constructs a module that makes use of a vtkTubeFilter. Depending on
the behaviour that is used, this module specification can be performed in less than ten lines
of Python. The module specification has to conform to the Module API as documented in
section 2.5.3.

The user creates the Python module specification, in this case called myTubeFilter.py, in
the DeVIDE user modules directory. Because this is a new module, the Module Manager has
to be instructed to scan for and make available new modules. This is done by clicking on the
Graph Editor’s Rescan button, shown in figure 2.7. At this stage, the new module appears in
the userModules category as shown in the figure. This can now be dragged and dropped onto
the canvas to the right of the module palette. If there are no serious errors in the module code,
a glyph representing the newly instantiated module will be created. If there are errors, the
system will inform the user of these and also of precisely where in the code they occurred.
The user can subsequently remedy these and simply retry instantiating the module, without
recompiling or restarting any other modules or parts of the software.

Once successfully instantiated, the module’s glyph can be connected with the existing
glyphs. In this case, the output of vtkFeatureEdges is connected with the input of myTube-
Filter and the output of myTubeFilter is connected to the visualisation module. Figure 2.9
shows the resultant network and figure 2.9 the resultant visualisation.

It is entirely possible that the module developer wishes to refine the module after seeing
the results after the first successful integration and network execution. Experiments with dif-
ferent parameters or even a different implementation can be performed by making use of the
any of the pervasive interaction elements documented in section 2.4.5. For example, the user
could make use of the introspection facilities to determine better default parameter values for
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Figure 2.8: The Graph Editor’s module palette (shortened) showing the module categories at the top, with the user-
Modules category selected. Modules in the currently selected categories are shown in the bottom list. A
module can belong to more than one category. Multiple categories can be selected.

Figure 2.9: The DeVIDE network shown in figure 2.7 with the myTubeFilter module integrated.
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Figure 2.10: A visualisation that makes use of the newly-created myTubeFilter module to emphasise discontinuities
in the sample mesh.

the new module. The visualisation and all other data and parameters throughout the system
change immediately to reflect the modifications. Subsequently, the user could modify the
module specification on disc and simply re-instantiate the module. At every instantiation, the
latest version of the module code is automatically loaded. During this process of refinement
and repeated module re-instantiation, the rest of the system and all modules remain up and
running. This facilitates the rapid development and refinement of new modules.

In general, creating new DeVIDE modules is a relatively simple process. The system
makes as few as possible demands on the module developer, but extra effort is rewarded with
more functionality. In addition, the pervasively dynamic nature of DeVIDE that enables the
above-mentioned rapid refinement and experimentation with new modules helps to distin-
guish it from many similar problem solving environments.

2.5.3 Module Application Program Interface

The DeVIDE module application program interface, or API, refers to the standard interface
via which the Module Manager communicates with and manages DeVIDE modules. This
interface consists of a number of expected methods and calling conventions.

Creating the Python code that implements these methods according to the API can be seen
as a form of module specification. However, the module specification is not limited to simple
specifications of the required methods, but can be as extensive as the module programmer
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Listing 2.1: Example of extended DeVIDE module specification with method bodies removed

class skeletonModule:
2 def __init__(self, moduleManager):

def close(self):
4 def getInputDescriptions(self):

def setInput(self, idx, inputStream):
6 def getOutputDescriptions(self):

def getOutput(self, idx):
8 def getConfig(self):

def setConfig(self, config):
10 def logicToConfig(self):

def configToLogic(self):
12 def viewToConfig(self):

def configToView(self):
14 def executeModule(self):

def view(self, parentWindow=None):

wishes and Python allows.
In the following subsections, the methods and calling conventions comprising the API are

discussed in more detail. If a module is created from scratch, all these methods must at the
very least be declared with an empty message body. In Python, this can be done by using the
pass keyword. However, in general a module developer will make use of one or more of the
ready-made module behaviours, or mixins, discussed in section 2.5.6 and will consequently
only have to implement those methods that differ from the used mixins.

Throughout the following exposition, we will refer to the example in listing 2.1.

Basic module behaviour

Each DeVIDE module is represented by a Python class, or object specification. Each module
is contained in a separate file on disc, but each file may contain other class declarations
besides that of the module class.

Line 1 of listing 2.1 shows a standard class declaration used for starting a module speci-
fication.

Initialisation and finalisation

__init__() is the constructor of the module class and will be called when the Module
Manager instantiates an object of this class, i.e. when this DeVIDE module is created. A
binding to the Module Manager instance is passed to the constructor. The module developer
can optionally store a copy of this binding in the module instance if the module has to access
functionality made available by the Module Manager.
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close() is called by the Module Manager when the module is destroyed. This method
should perform all the necessary cleanup actions, such as deleting any bindings to objects in-
stantiated or bound by the module and shutting down any user interface functionality. Before
close is called, the Module Manager will automatically disconnect all other modules. Note
that close() is not the class destructor.

Input and output

The input and output ports are specified by the four methods in lines 4 to 7 of listing 2.1.
getInputDescriptions() and getOutputDescriptions() return lists with de-
scriptions for the input and output ports respectively. Each element in a list is used purely as
documentation for that port, i.e. the user, via for example the Graph Editor, can get module
developer-provided information describing the nature of a specific port. These descriptions
are optional. However, the length of the list is crucial, as the system uses that to determine
the number of input or output ports.

The method getOutput(self, idx) returns the data associated with the idx’th
output port. setInput(self, idx, inputStream) associates the data bound to
inputStream to the idx’th input. These methods are called by the system when two
modules are connected. A module can prevent a connection by raising an exception within
one of these two methods.

Note that the module API has been designed so that no type information is explicitly spec-
ified. Python’s run-time typing system and interpreted nature enable much more advanced
type handling at connection time.

User interfacing

Each module has the option of communicating with the user via a non-modal graphical user
interface, i.e. it is allowed to create and show its interface, consisting of one or more windows,
but it is not allowed to restrict all application input to its own windows. A module may show
its interface immediately after it is created. This is the norm for viewer-oriented modules.
In general, however, a module does not show its interface until it is asked by the Module
Manager to do so. Such a request will be made via the view() method.

User interfaces can be created by the module developer in one or more of the following
ways:

• by making use of a graphical interface designing tool such as wxGlade[wxG],

• programmatically, i.e. by making the various library calls to build up a complete user
interface, or

• by making use of automatic interface creators in the module library.

Section 2.5.6 documents the automatic interface creators in more detail. The only constraint
is that these interfaces integrate with the main wxPython event loop. In practice, this means
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that most interfaces are built with wxPython widgets, although it is conceivable that other
interfaces can be used, as long as they periodically call into the wxPython event loop.

The module developer can also choose not to create a purpose-built interface and to have
the user make use of the built-in pervasive interaction abilities of the DeVIDE platform. As
is the case with many other aspects of the platform, no constraints are put on the module
developer by for example requiring that a certain rigid interface API is adhered to. The
developer is free to create interfaces of arbitrary complexity. At the same time, infrastructure
is provided in those cases where the module developer wants to get a user interface up and
running with minimal effort.

The module API also assists with the transfer of information between the module user
interface, module state and the underlying code. The following section has more detail on
this.

Configuration handling

A very important aspect of the Module Manager’s functionality is its ability to serialise and
deserialise network state. By default it has access to all topological information, but it also
needs some mechanism to query and to set the configuration, or state information, of each
module. The configuration calls in lines 8 to 13 facilitate this process for both the Module
Manager and the module developer.

getConfig() should return an arbitrary Python data-structure that encapsulates the
state of the module. This data-structure is defined as being such that if it is passed to
setConfig(), the module will be returned to exactly the same state it was when the
getConfig() was called that returned that data structure. The module developer is free to
determine the completeness of this state, e.g. she may decide that only some variable values
have to be restored. Henceforth, we will refer to this as the module configuration data struc-
ture. These are the only two methods that are required if the module developer wishes the
module to support serialisation.

However, many of the packaged higher-level module behaviours that are user-interface
related expect that the module conforms to a certain model of configuration information stor-
age and flow. This model entails that a module maintains an explicit internal configuration
data structure and that the system has some say in when the state information is passed from
the module user interface to its configuration data structure, and from the configuration data
structure to the underlying algorithm. The diagram in figure 2.11 illustrates this model of
state information flow. The methods that are expected are listed in lines 10 to 13 of listing
2.1 and are also shown in the diagram.

For example, all modules that make use of the createECASButtons() Module Li-
brary call, or any modules that make use of a module behaviour that makes use of this call,
have the following buttons as part of their user-interfaces: Execute, Close, Apply, Sync, Help.
Figure 2.14 shows an example of such an interface with the mentioned buttons at the bot-
tom. When the user clicks on Sync, or “Synchronise dialogue with configuration of underly-
ing system.”, the system calls logicToConfig(), followed by configToView(), thus
causing the state information to be extracted from the underlying logic and reflected in the
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Figure 2.11: A model of the flow of module state information between the user interface, the module configuration
data structure and the underlying logic, i.e. the actual implementation of the module algorithm. Com-
munication with the Module Manager is also shown. The module API methods that drive the flow are
also indicated.
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user-interface. When the user clicks on Apply, or “Modify configuration of underlying system
as specified by this user-interface”, the state information is transferred from the user-interface
to the underlying algorithm by the system via calls to the module’s viewToConfig() and
configToLogic() methods. Directly afterwards, these two methods are called again, but
in reverse sequence, so that the state information percolates back up from the underlying al-
gorithm to the user interface. This is so that the algorithm also has the opportunity to reject
invalid state information and to notify the user.

If any module that implements this configuration flow model is serialised by the system,
its serialised state will reflect the module state that was last applied by the user.

This type of consistency and expected behaviour facilitate the creation of new modules
as well as the interaction of the user with the software. The module developer is free to im-
plement these methods without maintaining an explicit instance of an internal configuration
data structure, as long as the methods put the module in the expected post-invocation state.

Execution

The executeModule() method, shown in line 14 of listing 2.1, is called by the system
when the user indicates that an explicit execution of a module is required. However, this
method is not used as part of the demand-driven execution model of the DeVIDE software.
As explained in section 2.5.4, the software requires that each module output object supports
an Update() call that guarantees that all previous processing is up to date. Due to this,
in most cases the executeModule() method simply calls Update() on the module
outputs.

2.5.4 Execution model
The DeVIDE framework is based on a demand-driven execution model. In other words,
network execution only takes place when output data is requested by the user, for example
through a viewer or a writer module.

In general, it is required that all module output objects have an Update() method that
can be invoked by connected consumer modules. Calling this method should guarantee that
the output object is up to date, implying that all required input data is also up to date and
that the module in question has performed all relevant processing. If all modules follow
this convention, update requests propagate backwards to the required source modules and
processing subsequently propagates forwards through the relevant parts of the network.

We illustrate the working of this execution model with the example shown in figure 2.12.
When a consumer requires up-to-date output data, it calls the Update() of the encapsu-

lating output object, in this example called Output 2. The output object then notifies its owner
module, Module 2, which in turn requests its input objects (the output objects of its producer
module, i.e. Output 1 in the diagram) to update before it can perform its own processing.
This update request propagates all the way back through any given network until it reaches
the source module or modules, in this case Module 1. The backwards propagation is shown
by the dashed arrows. The actual processing then starts at the first module, or modules, and
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Figure 2.12: The DeVIDE demand-driven execution model. Due to the simple update convention, output data
update requests propagate backwards through any given network until the source module is reached.
Processing then propagates forwards until it reaches the final output object.

propagates forwards through the network until the final required data object is up to date.
This forwards propagation is shown by the non-dashed arrows.

This simple convention, also followed by VTK[SML99] and ITK[ISNC03], facilitates
transparent execution of arbitrarily complex network topologies. For instance, modules can
have any number of inputs. If the convention is followed, module execution will be correctly
scheduled and only the necessary parts of the network will actually execute. Output objects
usually implement update caching, i.e. if none of the required input objects have changed
since the last update request, no processing has to be performed. In this way, network execu-
tion is kept to the minimum required to generate a valid output.

It is important to note that modules are not required to follow this convention, as long as
a similar local convention is adhered to or as long as a module can guarantee that its output is
always up to date. By a local convention, we mean that if a particular producer module can
only be connected to a particular set of consumer modules, and there exists some agreement
amongst these modules with regards to ensuring that the producer module’s output data is
up to date when any of the consumer modules require this, the execution model still holds.
Similarly, certain modules have always-up-to-date output data, for example modules that
allow user interaction and immediately copy the results of the interaction to their outputs.
In this case, the update convention is not required, but correct network execution is still
guaranteed.

2.5.5 Introspection
As explained in section 2.4.5, introspection allows one to examine and change any object at
run-time. An object can be a simple variable, a more complex object containing variables
and executable code or executable code itself. Due to the use of Python as the primary
development language, DeVIDE can offer different forms of introspection with which the
user is able to examine and change any aspect of the system at run-time.

Figure 2.13 shows a sample session with the central introspection interface. In this exam-
ple, the user, after making sure that the Graph Editor has been started up, creates two modules
in the Graph Editor: one to generate a superquadric isosurface and another to visualise that
surface. Subsequently the user changes the parameters of the superquadric function in order
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Figure 2.13: A sample introspection session with the main DeVIDE Python Introspection window.

to generate a new surface. This is done via the configuration data structure interface as ex-
plained in section 2.5.3. Finally, the user investigates ways to serialise the network, i.e. to
convert the network topology and module state information into a data structure that can be
replicated or re-used. Remember that the actual state of the code is updated continuously as
changes are made, so these changes will for instance be immediately reflected in any running
visualisations or algorithm outputs. This kind of interaction and real-time feedback make for
effective prototyping.

During such a session, the system attempts to assist the dialogue by showing help in
the form of tool-tips wherever applicable. This help is extracted from the running code. An
example of this is shown in figure 2.13. Possible completions of statements are also suggested
by querying the member methods and variables of objects. An example is shown in figure
2.15.

At many points in the DeVIDE user interface there are possibilities to start an introspec-
tion session, for example via the module graphical user interface if the module developer has
made use of the packaged introspection behaviours discussed in section 2.5.6. However, via
the main introspection interface all internal objects are always available. Modules can also be
interactively “marked” and named by the user via the Graph Editor. A list of marked modules
can be requested from the Module Manager via any of the introspection interfaces.
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Snippets

Snippets are an interesting hybrid of introspection and batch programming that consist of use-
ful sequences of introspection commands and can be stored on disc as DeVIDE “snippets”.
These snippets can be executed via the “Run Snippet” button shown in figure 2.13, also avail-
able in other introspection interfaces. When such a snippet is executed, the instructions are
sequentially fed to the introspection interface from which the “Run Snippet” function was
invoked.

Snippets are often used in cases where a module would be less appropriate. For example,
DeVIDE ships with snippets for calculating the surface area of all selected 3D objects a
marked 3D object viewer module, or for making animations of deforming surfaces. One
could also see the DeVIDE snippet as a kind of plugin that has access to all system internals
and does not have to make use of a fixed plugin API.

2.5.6 Module Library
The DeVIDE Module Library is an extensive collection of utility program code that can be
used by module developers to create new modules. This library consists of module behaviours
and discrete methods that can be used directly or indirectly, i.e. via a module behaviour, by
modules. The discrete calls include functionality for logging and explicit error reporting1,
module user interface creation and module interaction through introspection. In general,
these are made available through the various module behaviours. Some of the often-used
behaviours are discussed in more detail in this section.

Most module behaviours are implemented as mixin classes. A mixin class, as the name
indicates, can be “mixed in” with, or added to, a module specification. It should not be seen
as a base class. A module developer can make use of any number of mixin classes to add each
mixin’s encapsulated functionality to the module that is being created. Some more complex
module behaviours are implemented as real base classes and are built up out of a number
of mixin classes. As explained in section 2.5.3, the complete list of module methods only
have to be implemented if a module is written from scratch, i.e. without making use of any
packaged module behaviours. Usually, however, a module makes use of packaged module
behaviours and only a small number of the module API methods have to be implemented.

Module introspection

Introspection functionality can be added to modules by making direct or indirect use of the
module introspection mixin. Note that modules that do not make use of this mixin can also
be introspected via any of the other interfaces offered by the system.

The user interface widgets that can be seen in the second to last widget row in figure
2.14 are usually automatically created and configured by the system when requested by the
module developer. The introspection functionality that they invoke is encapsulated by the
introspection mixin.

1Most errors are automatically detected by the system and verbosely reported to the user.



34 CHAPTER 2. DEVIDE

The drop-down box on the left of the second to last row contains a list of objects, supplied
by the module developer, that can be examined by the user. In general, these are objects
contained by the current module, but often include an instance of the module itself. If any
of these objects are selected and they are VTK objects, a special interface such as the one in
figure 2.15 is automatically created and shown. At run-time, the VTK object is queried and a
list of its callable methods is created. On the grounds of this list, a graphical user interface is
created. Each of the tabs contains a different set of controls.

In this example, the user is experimenting with a vtkXMLImageDataReader VTK object.
Note that the interface suggests possible member variables and functions based on the user’s
input. If the selected object is not a VTK object, a simpler interface, similar to the one shown
in figure 2.13, is shown. It is of course possible to create more specialised interface creation
logic for any other type of object. If the “Pipeline” button is clicked and there are VTK
objects in the object list, a representation of the linkages between the underlying VTK objects
is shown. Objects can be selected from this graphical representation and interacted with. Our
VTK object and pipeline parsing implementation is based on an existing library[vtk].

Scripted interface creation

As explained in section 2.5.3, the user has a choice of creating a user interface with a graph-
ical interface design tool, creating the interface programmatically or by making use of an
automated interface creator. The scripted interface creation mixin is an example of such an
interface creator.

When making use of this mixin, the module developer can specify a number of variable
names and variable and type descriptions, and the system will automatically create an appli-
cable user interface window. The complete interface shown in figure 2.14 is an example of
such a window. All logic to perform input sanity checking is supplied by the system. For
example, the value being edited in the “Model bounds” text box has been specified to be a
six-element tuple of floats. When the user attempts to apply a new value, it will be automati-
cally validated by the system and corrected if it is not a valid six-element tuple of floats. The
validated value is added to the module configuration data structure.

The module developer has to specify how the validated values are transferred between
the configuration data structure and the underlying logic, i.e. the configToLogic() and
logicToConfig() methods have to be specified as explained in section 2.5.3. In general,
these are quite straight-forward, but the module developer has the option of performing more
specialised processing.

Simple VTK object wrapping

Modules in DeVIDE are in general more high-level and are built up out of two or more VTK,
ITK or other objects, but it is often useful to be able to wrap and experiment with discrete
VTK objects. For this purpose, a simple VTK object wrapping base class is available. Listing
2.2 shows an example of the use of this class to wrap the vtkTubeFilter VTK class.
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Figure 2.14: Screenshot of an example dialog created by the scripted configuration module mixin. An example
tool-tip is shown as the mouse pointer hovers over the “Model bounds” text input widget. The standard
introspection widgets can be seen on the second row from the bottom. The standard module action
buttons are on the bottom row.

The resultant module has a complete user interface that is automatically generated by
analysing the VTK object, is able to display user help by querying the VTK object documen-
tation and is completely serialisable. By this last observation, it is meant that any changes
made by the user via the generated interface are saved and restored when the containing
network is saved or restored. In other words, it is a rather complete DeVIDE module.

A relatively simple script was created to wrap a few hundred VTK objects in this way.
DeVIDE can thus also be used as a graphical front-end for experimenting with various VTK
objects. Complete networks of VTK objects can be configured and stored for later use. This
makes for a useful experimental and learning tool.

2.6 The prototyping process in DeVIDE

The algorithm prototyping process can be seen as an optimisation problem. The error that is
being minimised is the difference between the correctness of a hypothetical perfect solution
and the correctness of the current solution. The independent variable axes span a space that
consists conceptually of three possibly overlapping subspaces: structure subspace, program
code subspace and parameter subspace. Structure refers to pre-packaged processing that is re-
quired, for example simple pre-processing and analysis of input data. Program code refers to
the actual lines of program code that are being written and modified. Parameters are of course
the various algorithm-specific variables that can be changed to modify the characteristics of
that algorithm.

Finding a suitable algorithm implies converging simultaneously through the three sub-
spaces until a local minimum error is found that satisfies the design requirements. In other
words, various permutations of structure, program code and parameters are tested until the
resultant algorithm is considered to be a good solution.
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Figure 2.15: Screenshot of sample introspection session with a VTK object after it has been selected from the object
drop-down list on the second to last row of the dialogue in figure 2.14.



2.6. THE PROTOTYPING PROCESS IN DEVIDE 37

Listing 2.2: Example of a complete module wrapping of a simple VTK object

# class generated by DeVIDE::createDeVIDEModuleFromVTKObject
2 from moduleMixins import simpleVTKClassModuleBase

import vtk
4

class vtkTubeFilter(simpleVTKClassModuleBase):
6 def __init__(self, moduleManager):

simpleVTKClassModuleBase.__init__(
8 self, moduleManager,

vtk.vtkTubeFilter(), ’Processing.’,
10 (’vtkPolyData’,), (’vtkPolyData’,),

replaceDoc=True,
12 inputFunctions=None, outputFunctions=None)

In order to converge efficiently to a suitable solution via prototyping, it should be possible
to search both rapidly and in a convergent fashion through the solution space described above.
DeVIDE attempts to help the user satisfy both of these requirements.

The first requirement, rapid searching, is facilitated by the pervasive interaction architec-
tural element of the system: structure space is traversed by reconfiguring the topology of the
current functional module network and by instantiating pre-packaged modules. Program code
space is traversed by creating and modifying modules and snippets and via the introspection
functionality. Parameter space is searched via interaction with the various module-specific
graphical user interfaces and also with the introspection functionality.

The second requirement, i.e. that the search through solution space should be convergent,
is facilitated by the fact that the system gives immediate feedback on the smallest step made
in structure, program code or parameter space. For example, if a single parameter is changed
via introspection, the resultant output data or visualisation is immediately available at any
point in the network that is being used. This helps the user to iterate incrementally towards
an improved permutation, i.e. towards a lower error in the solution space.

Very importantly, all iterative steps in the structure, program code and parameter spaces
can be taken at run-time, without having to restart the platform or compile, link and load new
program code. For example, after creating a new module or making changes to an existing
module, only that module has to be re-instantiated for the changes to take effect. The rest of
the system and the complete functional module network remains at its previous state. This
factor speeds up prototyping to a great extent and distinguishes DeVIDE from many similar
problem solving environments.

This optimisation problem view of prototyping is an alternative but compatible formula-
tion to the iterative software development model view proposed in the introduction.
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2.7 Discussion
In this chapter we presented the Delft Visualisation and Image processing Development En-
vironment, or DeVIDE, a software platform for the rapid creation, testing and application
of modular image processing and visualisation algorithm implementations. DeVIDE focuses
on facilitating and speeding up the prototyping aspects of visualisation and image processing
related research. It does this by enabling a rapid convergence to a suitable problem solution
through the structure, program code and parameter subspaces.

DeVIDE has the following features:

Pervasive Interaction As explained in section 2.4.5, it is possible to interact, at run-time,
with the platform at any level and at all points. This characteristic differentiates the
platform from many similar systems.

Easy integration DeVIDE attempts to make it as easy as possible to create new algorithm
modules. Several characteristics aid in this goal:

1. There are only two requirements for code that is to be implemented in DeVIDE: it
should support data-flow-based processing and it should be callable from Python.
In most cases, it is straight-forward to satisfy these requirements.

2. The module specification language is Python. The advantages of this language
choice are discussed in section 2.5.1.

3. The module API easily scales upwards and downwards. In other words, a module
developer is free to implement the complete module API but, in cases where
not all infrastructure-related functionality is required, only has to implement the
relevant parts. In addition, many of the module API calls scale in a similar way,
i.e. the developer can choose different levels of implementation detail.

4. The pervasive interaction feature mentioned above also assists the module devel-
oper in the module creation process.

Short code-test iterations In DeVIDE, all explicit parameters can be changed. Only the
required sections of the processing pipeline re-execute so that the user can immediately
examine the new results. This is a feature available in most good visualisation and
image processing packages.

Modularity In DeVIDE, all algorithmic code is integrated in the form of extremely strictly
partitioned modules. The interface between module and the rest of the framework
consists of less than ten methods. Isolating code in this way facilitates cooperation
between module developers, as they don’t have to deal with the internals of external
code.

Facilitate re-use Encapsulating implementations in modules keeps code separate but allows
cooperation due to the common module API. This allows researchers to share imple-
mentations in the form of modules and to reuse old implementations in new experi-
ments. If the code were monolithic, this would be prohibitively difficult.
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Scalability As more functionality is added over time, monolithic (i.e. non-modular) systems
become more difficult to develop and use. Modular data-flow systems, such as DeV-
IDE, generally do not suffer from this problem, as functionality is added in the form of
modules. The system kernel remains compact and maintainable. Modules remain rela-
tively simple and strictly isolated from each other. The fact that the number of modules
increases has no impact on manageability. In this way, complexity and functionality
have been decoupled.

Documentation and reproduction In addition to the fact that complete networks can be
saved and restored, human-readable representations of the networks and their param-
eters, such as the example shown in figure 2.3, can also be produced. This plays an
important role in the documentation of complete algorithms and methods.

Platform independence All components of DeVIDE were selected or designed to be platform-
independent. This means that DeVIDE, in theory, can run on all modern operating
systems. DeVIDE development takes place both on Windows and Linux. Binaries for
both these platforms are available.

DeVIDE, unlike many similar systems, attempts to keep the abstraction layer between the
module developer and the underlying logic as thin and as simple as possible. This approach
yields the greatest flexibility and performance. The flexibility manifests itself in that modules
can be created with the least possible effort and that the module API is relatively unrestrictive.
The performance is attributed to the fact that underlying logic does not have to be adapted to
adhere to a DeVIDE specific data-model, but continues to make use of its native data-model.
For example, connecting two VTK-based modules generally results in the underlying VTK
objects being natively connected.

The trade-off for this flexibility and performance is of course robustness. With DeVIDE,
we have made the design decision to give the module developer as much freedom as possible,
as our main goal is to facilitate the prototyping and development of new algorithms. This
also means that it is entirely possible for underlying misbehaving module code, e.g. written
in C++, to cause the platform to crash. In our experience, this is a worthwhile trade-off.

Chapter 3 presents applications that demonstrate how DeVIDE functions in the algorithm
development process. In addition, all the work in chapter 4 was performed within the DeV-
IDE framework. In our experience and that of our collaborators, the system fulfills a valuable
role in visualisation and image processing related research.

We plan to extend the system with more modules and especially more interaction possi-
bilities. The next large architectural change is adapting the platform to allow for transparent
distributed processing. After the planned changes, the module manager will be able to exe-
cute module code on remote machines, completely transparently to the user. The changes we
have in mind increase the already present separation between the front-end and the processing
components. As an added advantage, this will also increase the robustness of DeVIDE.
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Chapter 3

DeVIDE Applications

In this chapter, we present three applications, or case studies, of DeVIDE. In the first, we
present DeVIDE functionality and interfaces for the pre-operative planning of shoulder re-
placement operations. The second application involves the registration and reconstruction
of two-dimensional microscopic sections of the female human placenta. Finally, we discuss
how DeVIDE was used as part of a study on the displacement of the female human pelvic
floor muscles.

3.1 Pre-operative planning for glenoid replacement
In the Netherlands, 1.5 million people suffer from chronic arthritis. Every year, this group
grows with 100000 new patients[reu]. Chronic arthritis can lead to irreversible joint damage
and disability.

Joint replacement is indicated in cases where rheumatoid arthritis 1 or osteoarthrosis2, the
two most common forms of arthritis, has resulted in severe joint damage that in turn causes
increased pain and reduced function. By 1994, 10000 shoulder replacements per year were
being performed in the USA alone[WR94].

Hip and knee replacements are very successful procedures with regards to pain relief,
post-operative joint functionality and durability. At ten years follow-up, the revision rate for
cemented total hip prostheses is 7% and about 13% for uncemented total hip prostheses[MHSO00].

1Rheumatoid arthritis is a severe inflammatory disease with chronic polyarthritis (inflammation in multiple
joints) as its most characteristic clinical feature. This inflammation leads to joint pain, swelling and loss of mobility.
Long-standing arthritis can lead to irreversible joint damage, joint space narrowing, erosions and deformities. Joint
inflammation and joint destruction may result in serious disability.

2Osteoarthrosis, also called osteoarthritis, is the most common form of arthritis. This disease is characterised by
the degeneration of cartilage in the joints which is accompanied by the hypertrophy (overgrowth) of the underlying
bone[KD94]. Osteoarthrosis is associated with joint pain and stiffness, as well as loss of range of joint movement.
This disease is one of the most frequent causes of physical disability among adults: 20% of all adults over the age
of 55 suffer from osteoarthrosis. 90% of adults over the age of 65 suffer from some form of osteoarthrosis[reu].

41
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Figure 3.1: The skeletal structures of the shoulder. Courtesy of the Delft Shoulder Group.

In contrast to this, shoulder replacement yields good results with regards to pain relief, but
fares significantly worse with regards to post-operative joint functionality and especially re-
placement durability. Literature shows that after nine years, between 24% and 44% of shoul-
der glenoid components show radiological loosening[TCS97].

One of the reasons for this situation is the fact that the placement of shoulder prostheses
is an extremely difficult procedure. The procedure is complicated by two factors:

• The shoulder joint is a far more complex mechanism than either the hip or the knee
joints.

• A relatively small incision is made during the shoulder replacement operation. This
small incision results in a very limited field of view that the surgeon has to contend
with.

Figure 3.1 shows the skeletal structures in the human shoulder. The upper arm bone, or
humerus, rotates against the glenoid, which is the very shallow cup-like part of the shoulder-
blade, or scapula. The humerus is held in the shoulder joint by a collection of muscles and
tendons called the rotator cuff. The scapula itself is non-rigidly attached to the thorax via the
collar-bone, or clavicula, and is able to glide over the thorax.

This flexible construction yields an impressive range of motion for the shoulder joint, but
as is almost always the case with increased complexity, is less robust than for instance the
hip joint. This complexity also makes shoulder replacement operations challenging tasks.
Besides the fact that the precise functioning of this joint is not entirely known, the surgeon
has to cope with extremely limited visibility during the replacement operation. These factors
contribute to the lower long-term success-rate of shoulder replacement.

Shoulder replacement, or shoulder arthroplasty, entails that the glenoid and the humeral
head are replaced with prostheses. Figure 3.2 shows a CT-derived visualisation of the skeletal
structures in the human shoulder with implanted glenoid and humeral head prostheses.
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Figure 3.2: CT-derived visualisation of the bony-structures in the human shoulder. Both the humeral head and
glenoid prostheses have been virtually implanted, i.e. a total shoulder replacement.

Currently, the de facto standard for pre-operative planning for shoulder replacement is
template-over-x-ray planning. Template-over-x-ray planning entails that the orthopaedic sur-
geon manually overlays transparencies with various prosthesis sizes and types on an x-ray of
the patient’s shoulder. Consequently, the surgeon decides on a particular prosthesis type and
size. This method of planning offers no patient-specific intra-operative guidance for prosthe-
sis placement. Also keep in mind that this method by definition does not take into account
the patient musculature.

More advanced systems for the pre-operative planning of hip and knee replacement exist,
but, due to the complexity of shoulder replacements, no such tools exist for the shoulder.

The DIPEX (Development of Improved Prostheses for the upper EXtremities) project is
a clinically-driven research effort by the Delft Technical University, in cooperation with the
Orthopaedics Department of the Leiden University Medical Centre, that attempts to improve
the state of the art in shoulder replacement[VBvdG+02]. As an important facet of this ef-
fort, a novel approach to the surgical planning of shoulder replacement procedures is being
developed[VvBK+03].

This approach is based on a flexible surgical planning software system and the concept of
mechanical guidance devices, also called patient-specific templates. In short, the replacement
operation is planned by making use of computer-based pre-operative planning software. The
parameters of the virtually performed operation, such as the the insertion position and angle
of the glenoid component, are used to design a patient-specific mechanical guidance device
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that is used for per-operative guidance.
The patient-specific mechanical guidance device is a jig, or template, that can be used

by the surgeon during the operation to guide the use of another tool such as a drill or a
pneumatic saw. In the case of a glenoid replacement, the template uniquely fits the patient’s
scapular glenoid and has a conduit for a drill, thus acting as a drill-guide. By making use
of this template, the surgeon can ensure that the pre-operatively planned glenoid insertion
position and orientation are realised. In this way, a cheap and robust coupling between the
computer-based per-operative planning and the operation itself is realised.

Experimental pre-operative planning functionality for glenoid replacement was imple-
mented within the DeVIDE framework and consists of functionality to segment bony surfaces
from CT-data of the patient, a CAD-based interface to manipulate 3D objects efficiently in
a perspectively projected setting and functionality to generate a patient-specific glenoid tem-
plate automatically. This section documents this application of the DeVIDE framework.

3.1.1 Segmentation

A pre-operative CT-scan of the affected shoulder is made. The resultant DICOM data is
loaded by DeVIDE and a segmentation of the bony structures is performed by thresholding
and a 3D region growing starting from a set of user-selected starting points.

Since this method requires user assistance when the data of patients with rheumatoid
arthritis (RA) or osteo-arthrosis (OA) is being processed and since most shoulder replacement
patients have either RA or OA, we are also working on more advanced segmentation methods
that can cope with the abnormalities of affected bony structures. See chapter 4 for more
details on this.

After the segmentation, a surface model of the scapula is generated with the Marching
Cubes algorithm[LC87]. Because this surface model is generated on the binary segmented
data, it has the expected stair-step appearance. This is of course not the actual surface, but an
artifact of the binarisation. In order to remedy this effect, we could have used a dilation of
the binary segmentation as a mask of the original data and performed the surface extraction
on the result. Instead we chose an elegant surface-smoothing approach that adapts analogue
filtering techniques to polygonal meshes[Tau96, Tau00]. The latter technique is often more
robust when objects are close together in the image that is to be segmented.

The extracted surface can be visually checked for accuracy by interactively slicing through
the unprocessed volume data, orthogonally or obliquely, and checking only the 2D contour
intersection of the model and the slice. This is standard DeVIDE functionality and can be
done for any number of simultaneous objects, slices and slice directions.

In our case, the accuracy of the scapular surface, especially on the glenoid itself, is of ut-
most importance. This is due to the fact that the patient-specific template is designed accord-
ing to this surface and should fit the patient glenoid perfectly during the actual replacement
procedure. In section 3.1.3 we discuss some of the complications of this fact.
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3.1.2 Planning
Docking two 3D objects using only a perspective or an orthogonal projection on a conven-
tional screen is by definition quite difficult. In our case, we need very precise control over the
position and orientation of a prosthesis in order to implant it virtually into the surface model
of the scapula.

In order to solve this problem, we made use of some basic CAD interaction techniques
combined with the practical techniques used by our orthopaedic colleagues during shoulder
replacement surgery3. During a conventionally planned shoulder operation, the orthopaedic
surgeon initially tries to align the prosthesis with the intersection between two imaginary
planes. The first plane passes through the centre of the glenoid and the most lateral edge
of the scapula. The second plane is almost orthogonal to the first, parallel to the spina
and passes through the centre of the glenoid. Experience has shown that this will help to
achieve a post-operative centre of gleno-humeral rotation that is close to, or coincides with,
a healthy centre of rotation. This result plays a very important role in the success of the
replacement[LRRdH96].

DeVIDE integrates a selection of geometrical constraint-based object manipulation pos-
sibilities based on points, axes and planes. With this functionality, the double plane insertion
sketched above can easily be constructed and used as a first estimate for glenoid component
placement. In order to to this, the surgeon will start by selecting three points: one in the
centre of the glenoid and two on the lateral edge of the scapula. The point selection logic
makes it easy to select points on surfaces and will also keep these latched to the surface when
they are moved. A scapula lateral edge slice can now be created by making use of these three
points as a plane definition. The system will warn if the three selected points do not uniquely
define a plane. See figure 3.3 for an example of such a plane intersecting the scapula.

By repeating this process, but instead making use of the point on the centre of the glenoid
and two points on the posterior side of the scapula approximately equidistant from the spina,
a second plane can be defined. The intersection of these two planes constitute a very good
first estimation of the glenoid insertion axis.

The constraint system can now automatically align the prosthesis axis with the intersec-
tion of the two planes and optionally constrain all prosthesis motion to the plane intersection.
The blue surface model on the left of figure 3.3 represents the glenoid prosthesis. Logically
the constraint system can also work with a single plane: in this case the prosthesis can be
aligned with the plane, i.e. be embedded in it, and optionally all prosthesis motion can be
constrained to the plane. This is the approach that has been chosen in figure 3.3.

It is important to note that the constraint system works for arbitrary sets of points, lines
and planes. The operating surgeon does not have to make use of the two-plane approach,
but is free to choose any other constraint-based method. A system and interface is provided
for defining new local coordinate systems by making use of existing geometry. These local
coordinate systems can subsequently be used to define new geometry that can be used in
conjunction with the local coordinate systems to manipulate and constrain 3D objects in a

3Source: Prof. P.M. Rozing, head of the orthopaedics department at the Leiden University Medical Hospital, The
Netherlands.
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Figure 3.3: Part of the glenoid component planning functionality. On the left the complete models are shown and
on the right only their contours. The contour view enables the user to judge whether the prosthesis has
a good fit and is reminiscent of the conventional template-on-x-ray planning. The slice is anatomically
oriented but can be moved to check all parts of the glenoid component.

perspective or an orthogonal projection setting. This functionality has proven to be very
useful.

During the final prosthesis manipulation, objects can be hidden and object contouring ac-
tivated, so that the object intersection curves with the anatomical planes can be seen overlaid
on the CT-data slices. This is shown on the right of figure 3.3. In this mode, the volume slice
can still be moved to and fro. This enables the surgeon to judge the fit of the prosthesis with
regards to the bone volume that is visible in the CT-scan. This view is more familiar to the
surgeons, as it is strongly reminiscent of the template-over-x-ray planning method.

Once the surgeon is happy with the virtual placement of the glenoid component, a patient-
specific template can be automatically generated by the planning software. In our case, this
is called the glenoid drill guide.

3.1.3 The Glenoid Drill Guide
The glenoid drill guide is a crucial link between the pre-operative planning phase and what
happens in the operating room. During pre-operative planning, the size and type of prosthesis
can be determined and this knowledge can easily be applied during the actual replacement.
Glenoid component position and orientation, however, require some extra ingenuity.

In order to realise this planning in the operating room in a robust and efficient fash-
ion, colleagues are working on applying principles for the design of pedicle screw drill
guides[GBM+01] to the design of a patient-specific glenoid drill guide. Figure 3.4 shows
the latest design of such a glenoid drill guide.

Initial validation experiments have been performed on cadaver scapulae to test the design
and functioning of the drill-guide[VvBK+03]. The results were not entirely positive, as the
cartilage covering the glenoid has a significant impact on the orientation of the resultant
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Figure 3.4: The latest design of the glenoid drill guide visualised on a surface model of a scapula. Illustration
courtesy of Liesbet Goossens and Bart de Schouwer, Katholieke Universiteit Leuven, Belgium.

implant. Recall that the drill guide is designed based on the bony surface of the glenoid and
not the cartilage covering it.

In spite of these results, we believe that the design has great potential. Currently, we are
looking at ways of improving the performance of the drill guide. There are at least two kinds
of solutions conceivable:

• The segmentation algorithms have to be adapted so that they are able to segment carti-
lage as well as bony structures. This poses two new problems, in that the segmentation
of affected cartilage is even more challenging than the segmentation of affected bone
and it is impossible at this moment to determine from a CT-scan which cartilage will
be solid enough to support the glenoid drill guide and which will not. In chapter 4
we present an approach that solves the problem of segmenting affected bone, but the
cartilage segmentation problem is still open.

• The drill guide design has to be adapted to compensate for the presence of cartilage
on the glenoid. Once again, it’s currently impossible to predict the actual quality and
stability of the affected cartilage.

While the design is being refined, functionality has been added to DeVIDE for the au-
tomatic design of a glenoid mould based on the performed planning. The end result of the
glenoid component placement planning is an insertion position and an insertion orientation.
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Based on these parameters, as well as the patient-specific scapular mesh, a mould is procedu-
rally constructed by a DeVIDE module. For example, in figure 3.5, an earlier mould design is
being automatically performed according to a planning and the patient-specific surface. The
procedure for this design was defined as follows:

1. Create a cylinder with an inner diameter of 3mm, an outer diameter of 5mm and a
length of 10mm.

2. Align this cylinder with the prosthesis insertion axis and place it a fixed distance above
the glenoid surface.

3. Construct three planes at 60o angles to each other that intersect at the insertion axis.
Determine the intersections of these three planes with the outside glenoid surface of
the scapula.

4. Extrude a triangle and an adjoining rectangle along the plane-scapula intersections,
starting from the exterior of the cylinder and moving radially outwards to just before
the edge of the glenoid. Determine when the glenoid edge is reached by monitoring
the tangent of the plane-scapula intersection line. These extrusions will form radial
knife-edges that will allow the mould to be accurately placed on the glenoid.

5. Construct a thin platform to further strengthen the radial knife edges.

For any new mould design, the implementation process can be automated and made
patient-specific if it can be described procedurally as in the example above.

3.2 Visualisation of chorionic villi and their vasculature
The chorion is the outermost membranous sac that encloses the embryo in the higher verte-
brates. The chorionic villi are thin, finger-like structures that protrude from the chorion and
extend through the uterine lining into the maternal blood supply. These chorionic villi form
the placenta. Each villus contains a number of blood vessels that carry oxygen and nutrients
back to the embryo.

During the development of the chorionic villous vasculature, primitive lumen-less cords
mature into the villous blood vessels. In addition, during the maturation, the vessels move
to the periphery of the villus that contains them. In humans, this development takes place
during the first twelve weeks of pregnancy. It is important that this villous vascular develop-
ment progresses normally, as deficient vascular development could possibly play a role in the
etiology of miscarriages and intra-uterine growth retardation[LE99].

3.2.1 Method
For this study, we made three-dimensional visualisations of the chorionic vasculature from
serial sections and attempted to find instances of cords during the maturation and margination,
i.e. moving to the periphery of a villus, process.
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Figure 3.5: An earlier mould design that is in the process of being constructed by DeVIDE according to a set
procedure, the patient-specific scapular surface and the final pre-operative planning parameters.

In a previous study[VEtVE98], a small amount of chorionic tissue from chorionic villous
sampling (CVS) was fixed in 2% buffered formalin and subsequently embedded in paraf-
fin. After this, 4µm serial sections were made, and stained with haematoxylin-eosin, CD31
immunohistochemistry and periodic acid-Schiff. These microscopic sections were digitised.
Figure 3.6 shows an example of such a digitised serial section.

For our study, three of the villi and the structures that they contain were manually de-
lineated on all sections. Based on these delineations, we filled the structures with different
grey levels, in order of containment with the most contained structures first. Figure 3.7 shows
the previous example after the delineation and filling operations. The outermost layer of the
villus is called the syncytiotrophoblast, the layer just interior to that the cytotrophoblast. The
bright structures in the interior are cords and vessels.

The next step was to make use of registration algorithms to transform each filled slice until
it was registered as well as possible on the previous slice, according to a selected similarity
metric. In our case, we assumed a rigid transformation, i.e. only translation and rotation,
and made use of the sum of the squared pixel intensity differences as the similarity metric. A
gradient descent optimisation algorithm was used to search through the transform’s parameter
space.

A number of DeVIDE modules, mostly making use of ITK[ISNC03] calls, were used in
this process. Figure 3.8 shows the DeVIDE network that was used to perform the registration.
All images were imported by the imageStackRDR module and processed by the register2D
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Figure 3.6: A digitised serial section of the chorionic tissue. The large structure covering almost half of the left
image border is a villus. The circular structures in its interior are vessels.

Figure 3.7: The section shown in figure 3.6 after manual delineation and filling with grey levels.
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Figure 3.8: The DeVIDE modules and network that were used to perform the registration.

module.

register2D allows the user to move through the stack of images at will and perform au-
tomatic image-to-image registration. In the case of a non-affine transformation, one would
have to traverse the volume strictly in one direction. Registrations can also be fine-tuned
manually, by modifying the automatically calculated rotation and translation. The image pair
that is being worked on is visualised by alpha-blending the two images. In this way, real-time
feedback is given on the quality of the registration. In addition, at each automatic registration
step, the value of the similarity metric for the relevant image pair is also shown.

Figure 3.9 shows the interface of the register2d module. On the left, an unregistered im-
age pair is visualised. Note that the registration parameters, rotation and the two translations,
are all 0. By clicking on the “Register” button, the registration algorithm will attempt to find
an optimal transformation. The automatic registration can be run as many times as is neces-
sary. The user can fine-tune the current transformation at any point. On the right, the image
pair has been successfully registered.

After all image pairs have been successfully registered, all transformations can be written
to permanent storage with the transformStackWRT for later use. More importantly, the resul-
tant transformations can be applied to the input images to reconstruct the complete 3-D data
volume. This operation is performed by the transform2D module shown in figure 3.8. The
resultant 3-D dataset can be processed and visualised with conventional 3-D techniques.
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Figure 3.9: The user-interface of the register2d DeVIDE module.

3.2.2 Results

The CVS dataset was registered and a volume was reconstructed. We chose to visualise the
villi with transparent surfaces (for context) and the cords and vessels with opaque surfaces.
Allowing the user to slice through the reconstructed volume at the same time aids understand-
ing of the data. Figure 3.10 shows an example visualisation where a single villus and two of
its vessels have been selected from the dataset by making use of 3-D region growing.

We were unable to find any instances of margination or of vessel maturation, even after
a painstaking manual examination of all data. However, our clinical colleagues did find the
reconstruction and subsequent visualisation illustrative. In that sense, the visualisation did
contribute towards insight in the data, although it was not successful in showing any instances
of maturation or margination.

During this experiment, it once again became clear how important the acquisition process
is for the success of the subsequent processing and visualisation. Making these 4µm sections
from the CVS specimens is extremely difficult, resulting in digitised images that often com-
plicate the registration and reconstruction process. In addition, the manual delineation and
registration processes were decoupled, i.e. there was no feedback from the registration pro-
cess to the delineation process. We have come to the conclusion that coupling these processes,
for instance in a unified user interface, would greatly improve the final results.
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Figure 3.10: An example of a visualisation of the reconstructed slices. A single villus and two of its vessels are
visualised.

3.3 Pelvic floor displacement from MRI
DeVIDE was used in two studies on the female pelvic floor[vJSVF04b, vJSVF04a] to assist
in the visualisation and quantification of MRI, or Magnetic Resonance Imaging, data.

In the first study, the relation between displacement of the pelvic floor and the intra-
abdominal pressure, or IAP, and pelvic muscle activation was examined in 10 healthy subjects
and 10 patients that have undergone primary genital prolapse. Genital prolapse is a condition
where the pelvic organs that are normally supported by the pelvic floor muscles, protrude out-
side the pelvic floor. MRI scans were made of all subjects during three conditions: maximal
IAP, maximal contraction of the pelvic floor muscles and rest.

The second study examined the loading effect of the weight of the internal organs on the
pelvic floor in the erect and supine positions in 12 subjects. MRI scans were made of all
subjects, also during the three conditions mentioned above, in both the erect and the supine
positions. The loading effect was quantified as the displacement of the pelvic floor.

3.3.1 Surface derivation
In both cases, it was necessary to measure the displacement of the pelvic floor based on MRI
data. Because MRI data is notoriously difficult to segment automatically and in order to
simplify the quantification of the displacement, it was decided to derive a surface describing
the inner border of the pelvic floor muscles.
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Figure 3.11: An example coronal slice from one of the MRI datasets. The arrows indicate the pelvic floor muscles.
The surface shown in 3.13 describes the inner surface of these muscles in 3D.

Figure 3.11 shows a single coronal slice from one of the MRI datasets. The arrows indi-
cate the pelvic floor muscles in the slice. On each coronal slice of each dataset, a the inner
border of the pelvic floor was manually delineated.

The delineations were subsequently loaded into DeVIDE for further processing. The
next step was to use the pelvic floor lines to derive a surface. The resolution in the coronal
direction was between 5mm and 7mm, so special care was required during the interpolation.
In addition, deriving a continuous, open and bounded surface from a volume is not straight-
forward. Iso-surfaces extraction techniques generate surfaces that are by definition closed,
unless truncated by the boundaries of the dataset.

A DeVIDE module was created to perform all the necessary processing. We implemented
the following steps:

1. Encode the lines as 0-valued points on each slice.

2. Calculate the unsigned distance field with the lines as the origin.

3. In each slice, change the sign of the distance values under the delineated curve to
negative, thus creating a signed distance field. We do this by performing a raster scan
through the image and counting the number of times we intersect the contour. Under
is of course entirely relative to an arbitrarily chosen origin, as long as this is consistent
for all images in a dataset. Figure 3.12 shows an example of the signed distance field.



3.3. PELVIC FLOOR DISPLACEMENT FROM MRI 55

Figure 3.12: The signed distance field generated from the delineated curve. Above and to the sides the distance
values are positive (i.e. the non-hatched areas)

4. Extract an iso-surface with iso-value 0 from the complete 3-dimensional signed dis-
tance field. The extracted surface will have extraneous geometry throughout the vol-
ume wherever positive and negative values meet and there is no curve to define the
boundary. For example, in figure 3.12 this will happen at the dashed lines. This geom-
etry has to be clipped.

5. Create a new distance field by changing the sign of the regions to the left and to the
right of the hashed block in figure 3.12. This new distance field can seen as an implicit
function and used to remove only the extraneous geometry.

The end result of this process is a continuous, open and bounded surface. An example
of a surface that has been derived in this way is shown in figure 3.13. The use of a distance
field results in a relatively smooth surface, in spite of the low resolution. Also, standard
interpolation techniques can be used on the distance field volume before surface extraction.

3.3.2 Measuring the displacement

For the second study, MRI images were acquired of the subjects in both supine and erect
positions. Since the relative position of the pelvic compartment is different for these two
positions, the data from the erect position was transformed to the local coordinate system of
the supine position. DeVIDE offers functionality for selecting a number of landmarks in both
datasets and then deriving a rigid transformation that best maps the selected landmarks in the
source dataset onto the selected landmarks in the target dataset. At least four bony landmarks
were chosen in all datasets in the second study in order to perform this transformation. After
the transformation, derived surfaces for the different positions could be directly compared.
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Figure 3.13: Example surface describing inner border of pelvic floor. Image courtesy of Stepan Janda and created
with DeVIDE.

In both studies, the pelvic floor displacement was measured by deriving the mean sym-
metric Hausdorff distance between the different pelvic floor surfaces derived for each patient.
First the surfaces were divided into two anatomical parts. In figure 3.13, these are denoted
by respectively Part1 and Part2. All surfaces were then exported from DeVIDE in a format
that was readable by the Mesh software[ASCE02]. Mesh was used to calculate the Hausdorff
distances.

3.3.3 Results

The first study showed no difference in pelvic floor displacement between the healthy subject
and prolapse patient groups. In the first study, a significant difference in displacement was
found between scans made in the supine position and scans made in the erect position. This is
due to the fact that the pelvic floor muscles are loaded with the weight of the internal organs in
the erect position. From this work, it was concluded that patients should ideally be scanned
in the erect position, as scanning in the supine position does not yield correct information
about the pelvic floor during normal loading.
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3.4 Conclusions
In this chapter, we presented three instances where DeVIDE was applied as a visualisation
and data processing tool in clinically-driven research efforts. In the first, functionality for the
pre-operative planning of shoulder replacements was shown. This is ongoing work. In the
second application, microscopic serial sections of chorionic villi were registered and recon-
structed to result in a three-dimensional dataset that could be used for further visualisation.
The third study employed DeVIDE in the quantification of pelvic floor deformation.

In the first two applications, DeVIDE functioned mostly in its role as platform for the
facilitation of algorithm development and testing. In other words, it was used primarily by
someone in the module developer role. In the last application, DeVIDE was used by a biome-
chanical researcher, i.e. an end-user, and served as an effective vehicle for the deployment of
implemented techniques for use by a researcher who was not specialised in computer science
or visualisation. In all cases the software has proven itself a valuable addition to the research
process.
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ification by using VolumePro Technology. In Proceedings of the 17th Spring
Conference on Computer Graphics (SCCG), 2001.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In Proc.
IEEE Visualization 2001, pages 255–262, 2001.

[Kru90] W. Krueger. The application of transport theory to visualization of 3D scalar
data fields. In Proc. IEEE Visualization ‘90, pages 273–280, 481–2, 1990.

[KWT87] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–333, 1987.

[LC87] W. Lorensen and H. Cline. Marching cubes: a high resolution 3d surface con-
struction algorithm. In Proc. of ACM SIGGRAPH, pages 163–169. Association
for Computing Machinery, 1987.

[LE99] Babette A.M. Lisman and Niek Exalto. Early human nutrition and chorionic
villous vascularization. Middle East Fertility Society Journal, 4(2), 1999.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29–37, 1988.

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: a progressive refinement
algorithm for volume rendering. In Proc. SIGGRAPH ’91, pages 285–288.
ACM Press, 1991.

[LL94] Philippe Lacroute and Marc Levoy. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. In Proc. ACM SIGGRAPH
‘94, pages 451–458, July 1994.

[LRRdH96] O. De Leest, P.M. Rozing, L.A Rozendaal, and F.C.T. Van der Helm. The influ-
ence of glenohumeral prosthesis geometry and placement on shoulder muscle
forces. Clinical Orthopedics, 330:222–233, 1996.

[MAB+97] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber.
Design galleries: a general approach to setting parameters for computer graph-
ics and animation. In Proc. ACM SIGGRAPH ‘97, pages 389–400, 1997.



BIBLIOGRAPHY 141

[Mau03] Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equa-
tions. PhD thesis, California Institute of Technology, 2003.

[Max93] Nelson L. Max. Sorting for polyhedron compositing. In H. Hagen, H. Müller,
and G.M. Nielson, editors, Focus on Scientific Visualization, pages 259–268.
Springer-Verlag, 1993.

[Max95] N. Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108, June 1995.

[MC98] Klaus Mueller and Roger Crawfis. Eliminating Popping Artifacts in Sheet
Buffer-Based Splatting. In Proc. IEEE Visualization ‘98, pages 239–245,
1998.

[MHB+00] Michael Meissner, Jian Huang, Dirk Bartz, Klaus Mueller, and Roger Crawfis.
A Practical Evaluation of Popular Volume Rendering Algorithms. In Proc.
Volume Visualization and Graphics Symposium, pages 81–90, 2000.
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